0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема стабилизации холостого хода, контроль давления масла

Стабилизация холостого хода, контроль давления масла

ОБЩИЕ СВЕДЕНИЯ

F1 – датчик давления масла (0,18 МПа);
F22 – датчик давления масла (0,03 МПа) (3114);
F25 – выключатель дроссельной заслонки;
J114 – блок контроля давления масла;
J139 – блок управления стеклоподъемниками и электроприводом люка в крыше;
J142 – блок управления стабилизацией холостого хода;
N10 – датчик температуры;
N62 – клапан увеличения частоты вращения холостого хода;
N65 – клапан отключения подачи топлива при торможении двигателем (4434);
Т6 – 6-контактный разъем (красный) за панелью приборов;
Т6а – 6-контактный разъем (черный) за панелью приборов;

  • Аксессуары Audi 100 1982-1992
  • Впускная система Audi 100 1982-1992
  • Выпускная система Audi 100 1982-1992
  • ГРМ Audi 100 1982-1992
  • Датчики Audi 100 1982-1992
  • Детали двигателя Audi 100 1982-1992
  • Детали салона Audi 100 1982-1992
  • Защита кузова Audi 100 1982-1992
  • Крепеж Audi 100 1982-1992
  • Крепление двигателя Audi 100 1982-1992
  • Кузов Audi 100 1982-1992
  • Масла и жидкости Audi 100 1982-1992
  • Накладки кузова Audi 100 1982-1992
  • Отопление Audi 100 1982-1992
  • Очистка окон Audi 100 1982-1992
  • Переключатели и кнопки Audi 100 1982-1992
  • Подвеска Audi 100 1982-1992
  • Ремни приводные Audi 100 1982-1992
  • Рулевое управление Audi 100 1982-1992
  • Система безопасности Audi 100 1982-1992
  • Система зажигания Audi 100 1982-1992
  • Система освещения Audi 100 1982-1992
  • Система охлаждения Audi 100 1982-1992
  • Система сцепления Audi 100 1982-1992
  • Стекла Audi 100 1982-1992
  • Топливная система Audi 100 1982-1992
  • Тормозная система Audi 100 1982-1992
  • Трансмиссия Audi 100 1982-1992
  • Электрика Audi 100 1982-1992

Руководства по маркам

  • Audi
  • BMW
  • Chevrolet
  • Citroen
  • Daewoo
  • Ford
  • Honda
  • Hyundai
  • Infiniti
  • Isuzu
  • Jeep
  • Kia
  • Lexus
  • Mazda
  • Mercedes
  • Mitsubishi
  • Nissan
  • Opel
  • Peugeot
  • Renault
  • Saab
  • Skoda
  • Subaru
  • Suzuki
  • Toyota
  • Volkswagen
  • Volvo
  • АЗЛК
  • ВАЗ
  • ГАЗ
  • Иж
  • УАЗ

AutoDocBook

© 2020 Все права защищены.
Незаконное копирование запрещено.
E-mail: [email protected]

Регулятор холостого хода (РХХ) — как работает, неисправности, симптомы, проверка

Во всех современных автомобилях есть регулятор, поддерживающий обороты холостого хода. Если ХХ теряет стабильность, возможно причина в датчике. Чтобы узнать это, нужно проверить регулятор холостого хода (РХХ).

  1. Виды и конструкции РХХ
  2. Как работает регулятор
  3. Признаки неисправности
  4. Диагностика датчика
  5. Визуальный осмотр
  6. Использование диагностических программ
  7. Проверка проводки
  8. Проверка сопротивления регулятора
  9. Проверка с дроссельным узлом
  10. Калибровка нового РХХ

Виды и конструкции РХХ

Внешний вид датчика напоминает электрический двигатель, имеющий коническую иглу. Прибор ответственен за подачу нужного количества воздуха в обход дроссельной заслонки на холостом ходу.

Существуют несколько разновидностей подобных датчиков:

  1. На основе соленоида. Это наиболее простой вариант устройства. При подаче напряжения на обмотки прибора срабатывает сердечник и помещается в специальное гнездо для сокращения диаметра проходного канала. В результате становится меньше объём подачи воздуха. Данный регулятор стоит дёшево из-за простоты конструкции. Работает этот прибор только в закрытом либо открытом положении.
  2. Шаговый. В него входят обмотки и кольцевой магнит. Вращение основного ротора происходит благодаря шаговой подачи напряжения на все элементы конструкции под воздействием электромагнитной силы. Открытие воздушного протока регулируется исполняющим механизмом в зависимости от того, где расположен ротор.
  3. Роторный. Подача воздуха регулируется поочерёдными частотными импульсами. Конструкция датчика похожа на соленоидную PXX. Главную роль в конструкции играет ротор.

Как работает регулятор

Когда двигатель работает на холостом ходу, через дополнительный канал подачи воздуха в обход закрытой заслонки дросселя, в двигатель поступает воздух, необходимый для его стабильной работы. Сечение этого канала регулируется РХХ. Количество воздуха учитывается датчиком массового расхода воздуха (ДМРВ). В соответствии с его количеством, контроллер подаёт топливо в двигатель через топливные форсунки.

По датчику положения коленчатого вала (ДПКВ) контроллер отслеживает количество оборотов двигателя. В зависимости от заданного режима работает РХХ, добавляя или снижая подачу воздуха в обход закрытой дроссельной заслонки .

На прогретом до рабочей температуры двигателе, контроллер поддерживает обороты холостого хода. Если же двигатель не прогрет, контроллер за счет регулятора увеличивает обороты, обеспечивая его прогрев на повышенных оборотах.

Признаки неисправности

Регулятор холостого хода является исполнительным устройством и его самодиагностика в системе не предусмотрена. Поэтому при неисправностях регулятора холостого хода часто лампа «CHECK ENGINE» не загорается. Симптомы неисправностей регулятора холостого хода во многом схожи с неисправностями ДПДЗ (датчика положения дроссельной заслонки), но во втором случае чаще всего на неисправность ДПДЗ явно указывает лампа «CHECK ENGINE».

Симптомы проблем с РХХ:

  • плавающий холостой ход;
  • плохой запуск двигателя, особенно зимой;
  • машина может глохнуть при сбросе газа, после переключения на нейтраль;
  • неконтролируемое повышение или понижение оборотов ХХ при штатной температуре двигателя;
  • падение оборотов после включения фар, кондиционера, отопительной системы;
  • дёрганье машины на ходу при небольших оборотах;
  • мотор глохнет при переходе с низшей передачи на высшую и наоборот.

Приведённые признаки могут проявляться все сразу, либо по отдельности.

Диагностика датчика

Проверить клапан холостого хода можно самостоятельно. Его неисправности можно разделить на две части: механические и электрические. Есть несколько методов проверки.

Визуальный осмотр

Для начала необходимо провести визуальный осмотр. Таким образом можно обнаружить дефекты корпуса, износ иглы, образование нагара. В случае образования отложений, почистить можно средством очистки карбюратора. Также рекомендуется почистить весь дроссельный узел, т. к. он в похожем состоянии.

Использование диагностических программ

Работу РХХ можно проверить с помощью диагностического адаптера и специальных программ. Например, можно использовать самый простой адаптер ELM327 и программу OpenDiagMobile. В меню программы нужно выбрать желаемое положение регулятора ХХ и посмотреть за работой клапана. Лучше выставлять минимум на 20 шагов больше, чем текущее положение.

Проверка проводки

Для этого нам понадобится мультиметр. На заглушенном двигателе снимаем разъём с датчика. Выставляем на измерительном приборе предел измерения 0-20 В постоянного напряжения. Измеряем напряжение на разъеме. В обычном случае должно быть 12 В.

Проверка сопротивления регулятора

Для этого нам понадобится измерить сопротивление между выводами A, B, а также C и D после отсоединения клеммы датчика. Мультиметр переводим в положение измерения сопротивления на пределе 0-200 Ом (Ω).

Нормальным значением является показатель в пределах 50-55 Ом. Сопротивление между A и C, B и D должно быть равно бесконечности.

Проверка с дроссельным узлом

Есть ещё один способ диагностики РХХ. Для этого понадобится снять дроссельный узел со шпилек вместе с датчиком.

При подключении разъема клапана и включении/отключении зажигания можно вживую наблюдать за работой РХХ. Посмотреть как работает игла, не затирает ли где-нибудь, проверить равномерность хода, услышать подозрительные звуки.

Калибровка нового РХХ

Что делать, если в результате проверки выяснилось, что датчик подлежит замене? Нужно откалибровать его.

  1. Проверяем расстояние от конца штока до монтажной пластины, оно должно быть не более 23мм.
  2. Отключаем минус от аккумулятора, обесточивая ЭБУ.
  3. Устанавливаем регулятор.
  4. Подключаем аккумулятор обратно.
  5. Включаем зажигание на 5 сек, не заводя двигатель. В это время происходит калибровка РХХ.
  6. Выключаем зажигание, завершая калибровку.
  7. Заводим двигатель и наблюдаем за холостым ходом.

Теперь вы знаете как работает регулятор холостого хода, как его проверить и в случае необходимости заменить. Как вы поняли в этом нет ничего сложного и все операции доступны даже начинающему автолюбителю.

Напоследок, видео о диагностике РХХ:

Датчик холостого хода автомобиля

Регулятор холостого хода — необходимый элемент любого современного авто. Функциональность устройства влияет на правильность работы силовой установки и комфортность эксплуатации машины. В статье рассказывается, зачем нужен этот датчик, как он действует, симптомы поломки и методики проверки.

Назначение и принцип работы регулятора холостого хода

Датчик или регулятор холостого хода обеспечивает нормальный ХХ. Он регулирует обороты силового агрегата, подавая воздух в определённом количестве. Если карбюратор обычно требуется отрегулировать вручную, то в инжекторе в автомобилях, оснащённых электронной системой зажигания, за регулировку данного процесса отвечает этот датчик. ДХХ встречается на ВАЗ и иномарках, у которых:

  • За составление пропорций смеси топлива отвечает ЭБУ;
  • Блок управления отмеряет требуемое количество топлива для каждого цилиндра;
  • Установлены датчики: датчик положения коленчатого вала, датчик положения дроссельной заслонки, датчик массового расхода воздуха, датчик детонации.

На основе информации с этих устройств начинает работу бензонасос и осуществляется распределение зажигания по цилиндрам мотора. По сведениям, передаваемым ДМРВ, регулятор холостого хода принимает решение о дополнительном обогащении смеси. Информация, полученная с ЭБУ, заставляют открыться обводной канал датчика. Если в карбюраторных силовых агрегетах обычно необходимо делать настройку подачи воздуха, то здесь система его регулирует сама. Карбюратор имеет для этого регулировочные шайбы и пусковую ручку. В инжекторных моторах с электронным зажиганием этот процесс происходит автоматически. Принцип действия ДХХ таков:

  • Блок управления мотором обнаруживает датчик и калибрует его;
  • Бортовой компьютер сравнивает показания ДМРВ с данными, передаваемыми ДПДЗ. По этим сведениям он определяет нехватку воздуха в системе;
  • На РХХ поступает напряжение, при этом игла детали выходит из своего канала. Таким образом производится подача воздуха в нужном количестве. Впоследствии он перемешивается с бензином, образуя смесь положенного состава.

На ХХ блок также анализирует данные о температуре моторного масла и антифриза. На основе этих сведений при запуске силового агрегата устройство также может подавать дополнительный воздух. Карбюратор же осуществляет регулировку ХХ в зависимости от положения жиклёров и дроссельной заслонки.

Регулятор холостого хода — это электродвигатель шагового типа. Он оснащён конусной иглой, подающей воздух. Сейчас на многих машинах используется четырёхшаговый датчик. Он обладает ступенчатыми регулировками подачи по байпасу. Датчик имеет следующие элементы:

  • Шаговый электродвигатель;
  • Четырёхпозиционный шток;
  • Иглу;
  • Пружину.

Понимая, зачем требуется и как действует ДХХ, необходимо знать его месторасположение.

Где расположен датчик холостого хода

Если карбюратор практически не имеет подобной детали, то на машинах с инжектором регулятор располагается около дроссельной заслонки, недалеко от датчика её положения. Чаще всего его закрепляют винтами, но иногда он может быть приклеен лаком. При замене деталь практически не нуждается в регулировке. Необходимо лишь, чтобы расстояние от иглы до посадочного фланца составляло 23 мм. Простота настройки детали считается одним из факторов, почему нынешние автолюбители выбирают инжектор, а не карбюратор.

Понимая, как устроен и где расположен датчик, нужно знать ещё признаки неисправности и методы тестирования регулятора холостого хода.

Признаки неисправности ДХХ

Главные признаки неисправности датчика холостого хода таковы:

  • Нестабильность оборотов на ХХ. Обороты самостоятельно меняются, плавают.
  • Осложнённый запуск силового агрегата. Он запускается с трудом, иногда может не запуститься вообще. Это особенно ощущается зимой или в холодную погоду.
  • При нормальной температуре силовой установки обороты падают или увеличиваются. Проблему можно увидеть по показаниям приборов.
  • Снижение оборотов при запуске печки, кондиционера или иного электропотребителя. При включении устройства на приборке отображается падение оборотов.
  • Дёргание авто на небольшой скорости. Авто ощутимо дёргается при движении.
  • Машина глохнет при сбрасывании газа и включении нейтралки.
  • Автомобиль может заглохнуть при включении повышенной или пониженной передачи.

Признаки неисправности или неправильной установки регулятора холостого хода могут присутствовать, как все сразу, так и наблюдаться лишь некоторые из них. Иногда проблема может носить плавающий характер. При этом симптомы на какое-то время исчезают или снижаются, а затем проявляются вновь. Иногда признаки неисправности рхх могут вызываться и иными поломками. Поэтому при возникновении указанных выше симптомов нужно продиагностировать этот элемент. Проверка осуществляется несколькими способами.

Методы диагностики РХХ

По правилам проверка автомобильного РХХ проводится на особом стенде. Он зачастую встречается лишь в крупных автотехцентрах. Обращение в них имеет смысл только в экстренных случаях, когда иными способами определить причину поломки не удалось. Обычно выяснить, что деталь сломалась можно и самостоятельно.

Но сначала стоит удостовериться, что сломался именно этот элемент, так как подобные признаки могут встречаться и при иных поломках. Для этого требуется максимально быстро разогнаться на машине. Проводить испытания желательно на свободной большой площадке или пустынном участке дороги, чтобы не помешать другим участникам движения. Если динамические показатели машины не изменились, скорее всего, сломался этот элемент. Если мотор стал хуже тянуть и разгоняться, то потребуется проверка не только регулятора холостого хода, но и диагностика мотора. Такое поведение машины нередко указывает на серьёзные неполадки силовой установки или на совокупность неисправностей, включая поломку РХХ.

Также нелишне узнать, присутствуют ли какие-либо коды неисправностей на бортовике. Найденные ошибки можно расшифровать на специальных сайтах в Интернете. По ним можно понять, связана ли поломка с РХХ или нет.

Диагностику датчика рекомендуется начинать с визуального осмотра. На нём нередко можно увидеть нагар и прочие отложения, поломку иглы и других элементов. Неисправная деталь ремонту не подлежит. Поэтому в случае обнаружения внешних дефектов её необходимо заменить. Нагар же можно удалить средством для чистки карбюратора. Этим составом рекомендуется почистить и весь дроссельный узел, так как, вероятнее всего, он тоже загрязнён.

Если видимых повреждений не обнаружено, следует продиагностировать деталь и проводку. Для этого существует несколько способов.

Первый способ. Для него потребуется диагностический сканер и программа для компьютера или ноутбука. Иногда встречаются приложения и для смартфонов. Например, можно взять адаптер адаптер ELM327 и программу OpenDiagMobile. Это устройство простое и недорогое. Сложностей с поиском данной программы обычно не возникает.

В меню рекомендуется установить положение датчика на 20 шагов больше, чем нынешнее. Понаблюдать, как работает клапан.

Второй способ. Бывает, что вышел из строя не сам регулятор, а повреждена проводка. Этот дефект приводит к неправильной работе детали. Чтобы обнаружить проблему, необходимо воспользоваться мультиметром. Измерения производятся так:

  • Заглушить двигатель;
  • Перевести измерительное устройство в режим вольтметра;
  • Удалить разъём с детали;
  • На мультиметре поставить значения 0–20 Вольт;
  • Померить напряжение на отключённом разъёме. Оно будет составлять 12 Вольт. Если значение иное, присутствует обрыв проводки. Его следует найти и устранить.

Третий способ. Проверка рхх мультиметром. Прибором, установленным на омметр, замерить сопротивление детали. На тестере установить значение 0–200 Ом. Сначала следует померить сопротивление на выходах A и B, а затем — на C и D. Клемму необходимо отключить. Если РХХ работоспособен, на дисплее высветится 50–55 Ом. А сопротивление между A и C или B и D будет равно бесконечности. Если значения отличаются от указанных, деталь следует поменять.

Четвёртый способ. Удалить датчик и дроссельный узел со своего места. При включении и выключении зажигания, можно будет вживую увидеть, как функционирует деталь. Метод позволяет определить сбои в её работе, подозрительные шумы и звуки.

Причины неисправности ДХХ бывают электрическими и механическими. Деталь чаще всего ломается от времени или из-за низкого качества. На её срок службы влияет регулярность технического обслуживания и особенности эксплуатации автомобиля. Датчик неремонтопригоден. Можно лишь выполнять очистку его элементов от загрязнений. В остальных случаях устранить проблему поможет только замена детали.

Замена и калибровка регулятора

РХХ для большинства моделей стоит недорого. Поэтому желательно приобретать оригинальные запчасти. Обычно купить такую деталь нетрудно. Практически для любого авто её можно найти в физических или Интернет-магазинах автотоваров.

Замена выполняется так:

  • Проверить на новой детали расстояние от посадочного места до иглы. Оно в норме составляет 23 мм;
  • Убрать минус с АКБ;
  • Удалить старый регулятор и заменить его новым;
  • Подключить аккумулятор;
  • Вставить ключ в замок зажигания и повернуть на один оборот. Заводить автомобиль не нужно. Примерно за 5 секунд датчик должен откалиброваться;
  • Выключить зажигание;
  • Запустить силовой агрегат и протестировать функциональность ДХХ. Для этого нужно проследить за оборотами на ХХ. Если они нормальные и все прежние неполадки исчезли, значит, работа выполнена правильно. Если процедура не помогла, желательно обратиться на СТО для профессиональной проверки и восстановления машины.

Ездить со сломанным датчиком можно. Это не запрещено ПДД. Но эксплуатация машины с такой проблемой не очень комфортна. Поэтому рекомендуется устранить её в разумные сроки.

Видео по теме

Стабилизация холостого хода

2.18.2. Стабилизация холостого хода

ОБЩИЕ СВЕДЕНИЯ

Блок управления Digifant и лямбда-зонд

Проверка работы

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Включить зажигание.
2. Клапан (1) стабилизации холостого хода должен вибрировать и жужжать. Если нет, проверить регулировку.
3. Выключить зажигание.
4. Отсоединить штекер от клапана и проверить сопротивление клапана. Сопротивление см. в подразделе 2.18.8.
5. Если значения не соответствуют, заменить клапан. В противном случае отыскать и устранить обрыв в электропроводке к блоку управления по электросхеме.

Проверка регулировки

Ток управления стабилизатором холостого хода зависит от нагрузки двигателя во время работы двигателя на холостом ходу. В результате следующих нагрузок ток управления может колебаться между 400–1000 мА:

– холодный двигатель;
– включен кондиционер;
– включены электропотребители;
– усилитель руля: руль повернут;
– регулировочный винт оборотов холостого хода завинчен до упора;
– неправильная регулировка момента зажигания.

Датчик холостого хода: принцип действия,устройство,виды,фото,назначение

Электронная система управления двигателем автомобиля (ЭСУД) имеет в качестве одного из исполнительных устройств регулятор холостого хода (РХХ). В простонародье — датчик холостого хода.

Что такое регулятор холостого хода?

Он представляет собой шаговый электродвигатель, который своей запорной иглой по сигналу с блока управления ЭСУД перекрывает или наоборот открывает канал подачи воздуха в двигатель. Тем самым обеспечивается пуск двигателя и поддерживаются необходимые обороты холостого хода. Поэтому при выходе регулятора ХХ из строя в первую очередь начинаются проблемы с запуском и работой двигателя на холостых.

Виды датчиков холостого хода

На сегодняшний день автомобильные производители представляют несколько типов РХХ:

  1. Соленоидный датчик. Работает, основываясь на электромагнитной силе. После того как на катушку попадает напряжение, сердечник прячется. Клапанная заслонка открывает возможность потоку воздуха беспрепятственно поступать внутрь. После отключения соленоида периферийный канал блокируется.

Контроль работы датчика происходит за счет динамики частоты командных сигналов. Определенное количество воздуха имеет свой частотный эквивалент, что позволяет четко регулировать работу РХХ.

  1. Шаговый. В технической структуре такого датчика предусмотрен кольцевой магнит и обмотки. Из-за шаговой подачи напряжения на каждый элемент, под воздействием магнитного поля, вращается главный ротор. Исполняющий механизм в зависимости от положения ротора контролирует открытие воздушного протока.
  2. Роторный датчик. Контроль происходит за счет поочередных частотных импульсов. Очень схож по структуре с соленоидным РХХ, но главное место в конструкции занимает непосредственно ротор.

Назначение регулятора РХХ

Используется регулятор холостого хода исключительно в электронных системах зажигания:

  • пропорции топливной смеси в инжекторе составляет бортовой компьютер;
  • количество бензина или солярки для каждого цилиндра отмеряет ЭБУ;
  • в электронное зажигание установлены датчики

(воздуха), ДД (детонации), по сигналам которых срабатывает топливный насос и распределяется зажигание по конкретным цилиндрам;
при отпущенной педали газа топливная заслонка закрыта полностью, пропорции топливной смеси нарушены, продукты сгорания засасываются обратно в камеру сгорания из-за разницы давления во

По результатам сигналов датчика воздуха контроллер принимает решение о дополнительном обогащении топливной смеси воздухом, игнорируя в этот момент показания датчика дроссельной заслонки.

Фишка на РХХ передает сигнал от ЭБУ, в регуляторе холостого хода открывается обводной канал, по которому проходит воздух в инжекторе либо дополнительное топливо в дизеле. Обороты мотора выравниваются, снижается износ поршневой и коленвала

Принцип действия

В карбюраторных моторах проблему обогащения смеси при запуске ДВС решала пусковая ручка и регулировочные шайбы. С возникновением электронного зажигания этим занимается регулятор холостого хода в комплексе с остальными датчиками и ЭБУ. Его принцип работы выглядит следующим образом:

  • калибровка РХХ производится контроллером ЭБУ автоматически после обнаружения этого датчика в системе;
  • фактически РХХ является шаговым электродвигателем с конусной иглой в специальном отверстии обводного канала дроссельной заслонки;
  • РХХ контакт никаких сигналов в «мозг» машины не передает, но получает их от контроллера, поэтому является не датчиком, а исполнительным устройством – электроклапаном;
  • в свою очередь, бортовой компьютер «видит», что в топливной смеси недостаточно воздуха по сигналам ДМРВ, сравниваемым с сигналами ДПДЗ;
  • на регулятор ХХ подается напряжение, игла выходит из канала, недостающее количество воздуха поступает в смесь для смешивания.

Кроме того, ЭБУ получает сигналы о температуре охлаждающей жидкости и масла в системе. При запуске в холодное время года необходимо прогреть двигатель до рабочей температуры, чтобы снизить износ деталей трения, поэтому канал РХХ приоткрывается для обогащения смеси инжектору, даже без нажатия педали газа водителем.

В момент старта алгоритм работы следующий:

  • ключ поворачивается, включается зажигание;
  • шток выдвигается до упора, игла перекрывает байпасный канал;
  • в момент упирания штока в калибровочное отверстие компьютер отсчитывает шаги назад;
  • на обмотки подается напряжение, клапан возвращается в открытое положение.

Количество обратных шагов запрограммировано в прошивке прибора. Например, у модификаций Basch на прогретом ДВС оно составляет 50 шагов, Январь – 120 шагов, соответственно. В общей сложности ход штока разбит на 250 шагов, чем дальше он вытянулся из обмоток шагового электродвигателя, тем большее количество шагов отсчитает ЭБУ. При покупке нового РХХ расстояние от фланца посадочного до иглы штока должно быть 23 мм ровно.

Признаки неисправности датчика холостого хода

Основной проблемой будет то, что данная деталь не оснащена каким-либо из видов самодиагностики. На панели управления вы не увидите мигающей лампочки или надписи, которая будет говорить о неисправности РХХ. Все будет зависеть от вашей внимательности, и того как вы чувствуете и слышите свой автомобиль. Признаками, которые свидетельствуют что деталь стоит проверить, будут:

  • автомобиль начал глохнуть на холостых оборотах (неравномерные обороты холостого хода);
  • резкое падение или увеличение оборотов во время холостого хода;
  • при езде на холодном двигателе, обороты не повышаются;
  • при переключении передачи, автомобиль глохнет.

Причин, по которым РХХ вышел из строя, немного. Как говорили раннее — это достаточно надежная деталь, но все же может выйти из строя. Причин неисправности может быть несколько:

  1. Износ иглы направляющего регулятора.
  2. Обрыв контактов внутри детали.
  3. Засорение иглы по причине некачественного топлива.

Как мы все с вами знаем топливо – одно из самых важных составляющих работы как двигателя, так и автомобиля в целом, и датчик холостого хода не является исключением. Большинство причин поломки детали — это использование бензина с примесями.

Профилактические меры

Для того, чтобы не столкнуться в будущем с полной неисправностью регулятора, периодически стоит проводить процесс чистки, описанный выше. Насколько часто проводить процесс чистки зависит от того, как активно вы пользуетесь своим транспортным средством. Если автомобиль – рабочий транспорт – рекомендуется раз в год проверять и проводить чистку датчика, если вы пользуетесь им только для себя – достаточно будет раз в два года. Но, конечно же, не забывайте о признаках неисправности детали, если они появились – не откладывайте.

Это поможет вам избежать полного выхода детали из строя и наслаждаться качественной ездой.Вместе с вами мы приходим к выводу, что деталь неприхотлива, проста в своей функциональности и использовании. Не забывайте: своевременное обнаружение неисправности — залог продуктивности работы автомобиля в целом. Полноценная работа двигателя зависит от исправности каждой его составляющей, и, если вы запустите любую деталь, в том числе и датчик холостого хода, — это может привести к более трудоемким процессам ремонта и выходу из строя всего автомобиля.

Проверка датчика холостого хода

Провести диагностику детали достаточно несложно, но обратите внимание на несколько моментов. Первой проблемой может быть снятие детали, большинство производителей крепят датчик ХХ на винты, и в крайнем случае их можно высверлить, но в некоторых вариациях деталь установлена на лак. Если ваш регулятор зафиксирован лаком, будьте осторожны, ни в коем случается не отрывайте его с применением силы, так как можно повредить впускную часть автомобиля. В вашем случае будет правильно демонтировать дроссельный узел полностью и лишь потом отсоединить РХХ.

Самый простой способ проверки конечно же визуальный осмотр. При визуальном осмотре первое, на что стоит обратить внимание — это загрязнение иглы. Так же обратите внимание на состояние контактов и самой дроссельной заслонки.

При обнаружение оборванных проводов их требуется вернуть на место. Припаяйте их и, во избежание коррозии, обработайте лаком.

Будет уместно, по возможности, произвести проверку РХХ мультимером или самодельным тестером. Мультимером вы сможете проверить сопротивление, а самодельным тестером (сделать можно из зарядки мобильного телефона) проверите ход штока регулятора.

Если вы обнаружите что мотор разрушен, полностью выработан шток или изношена конусная игла — деталь потребуется заменить. Не расстраивайтесь из-за этого слишком сильно, стоимость детали будет составлять всего около 1000 рублей.

Методика проверки датчика при помощи мультиметра

Самый надежный и распространенный способ проверить работоспособность датчика – воспользоваться мультиметром. Но для этого регулятор предварительно нужно снять. Обычно, он крепится несколькими винтами около датчика дросселя, но на некоторых автомобилях может быть закреплен специальным раствором или лаком.

Демонтировать РХХ с применением силы нельзя, поскольку существует большой риск повредить впускную систему. В подобном случае придется снимать весь дроссельный узел.

Для проверки электромотора необходимо замерять сопротивление обмоток. Контакты мультиметра нужно поочередно подключать на каждую из обмоток A и B, C и D. Если все работает исправно, то полученные данные попадут в диапазон 40–80 Ом.

В качестве дополнительной проверки мультиметром контакты можно поменять местами. Датчик, в таком случае, должен показать обрыв электрических цепочек.

ЗАГРЯЗНЕНИЕ ДАТЧИКА ХОЛОСТОГО ХОДА

Часто причиной неправильной работы регулятора холостого хода является его загрязнение. В такой ситуации можно заменить датчик (стоимость которого невелика) или очистить его. Очистка датчика холостого хода проходит в два этапа: Специальным средством (например, которое используется для очистки карбюратора) нужно смочить ватную палочку и ею очистить контакты датчика. Делать это необходимо осторожно, чтобы не повредить их; Остальные детали регулятора можно очистить механическим путем с использованием обозначенного выше средства. Смочите им, например, зубную щетку и аккуратно прочистите иглу, шток, пружину, удаляя накопившуюся грязь.

Очистка иглы и обводного канала

Для обеспечения доступа к деталям клапана требуется снятие РХХ по технологии:

  1. отсоединение колодки от разъема;
  2. очистка контактов разъема и штекера ватной палочкой, смоченной WD-40;
  3. откручивание винтов фигурной отверткой;
  4. извлечение регулятора для проверки состояния.

Внимание: Разбирать регулятор не нужно, достаточно обрызгать пружинку и шток с иглой спреем WD-40, дождаться высыхания, прочистив в это же время обводной канал дросселя.

Регулировка производится самим контроллером бортовой сети. Однако для стабильной работы двигателя следует проверить расстояние от посадочного фланца до выступающего конуса иглы. По умолчанию оно должно быть 23 мм.

Нюансы выбора датчика холостого хода

Оригинальный датчик холостого хода имеет маркировку по типу ХХ-ХХХХХХХ-ХХ. Последние две цифры указывают метку совместимости:

  • нечетные (01 и 03) взаимозаменяемые, четные (02 и 04) также взаимозаменяемые;
  • между собой эти группы не взаимозаменяемые, то есть, вместо «родного» 02 нельзя эксплуатировать клапан 01 или 03.

Даже в оригинальных регуляторах не помешает дополнительно смазать РХХ смесью литола и WD-40 (пружинка и шток). Поскольку замена РХХ своими руками востребована автолюбителями, существуют контрафактные регуляторы, которые можно опознать по признакам:

  • на упаковке нет отличительных меток;
  • стикер желтого цвета на корпусе без рамки;
  • наконечник иглы темного цвета;
  • тонкое черное уплотнительное кольцо вместо толстого красного уплотнения;
  • заклепки корпуса не имеют шляпок диаметром 3 мм;
  • белая пружина вместо черного изделия с частой навивкой;
  • корпус короче на 1 мм.

Поскольку установка всегда производится собственными силами, смажьте шток и пружинку дополнительно для увеличения эксплуатационного ресурса РХХ и всего двигателя.

Таким образом, электромагнитный клапан РХХ ценой 300 – 500 рублей лучше иметь в запасе, чтобы произвести замену в полевых условиях для нормализации холостого хода ДВС. Указанные методы диагностики позволят определить неисправность регулятора и забившегося обводного канала дроссельной заслонки.

Датчик расхода воздуха: принцип работы,виды,неисправности,фото

Обратный клапан топливной системы:функции,виды,устройство и принцип действия

АКПП Tiptronic — что это такое и зачем он нужен?

Аккумулятор с технологией AGM — что это такое и как работает?

Схема стабилизации холостого хода, контроль давления масла

Смотрите схему контроль давления масла и стабилизации холостого хода для автомобиля Ауди 100 (82-91 годов производства).

Если случились проблемы с Ауди 100, а точнее нарушен контроль масла, или плохой холостой ход машины, тогда смотрите эту схему и проверяйте работоспособность всех имеющихся узлов. Для чтения схемы перейдите в статью: «Условные обозначения».

Стабилизация холостого хода, контроль давления масла

F1 – датчик давления масла (0,18 МПа);Т6 – 6-контактный разъем (красный) за панелью приборов;
F22 – датчик давления масла (0,03 МПа) (3114);Т6а – 6-контактный разъем (чёрный) за панелью приборов;
F25 – выключатель дроссельной заслонки;Т10 – 10-контактный разъем (голубой) за панелью приборов;
N10 – датчик температуры;Т10с – 10-контактный разъем (чёрный) за панелью приборов;
N62 – клапан увеличения частоты вращения холостого хода;Т10d – 10-контактный разъем (жёлтый) за панелью приборов;
N65 – клапан отключения подачи топлива при торможении двигателем (4434);J114 – блок контроля давления масла;
17 – точка «массы» на впускном коллекторе;J139 – блок управления стеклоподъёмниками и электроприводом люка в крыше Audi 100;
83 – соединение с «массой» 1 в переднем жгуте проводов справа;J142 – блок управления стабилизацией холостого хода.

* Только в автомобилях Audi 100 с двигателем мощностью 85 кВт.
** Только в автомобилях с двигателем мощностью 101 кВт.

Схема стабилизации холостого хода, контроль давления масла

Методика настройки Холостого Хода

При построении относительно нестандартных двигателей (то есть там, где оставлено регулирование с помощью РХХ) довольна частая ситуация – полное или частичное отсутствие холостого хода, когда заставить работать его можно только постоянно подгазовывая, то есть выводя из режима ХХ, т.к система регулирования ХХ напрочь отказывается стабилизироваться. Иногда для получения более менее стабильных оборотов приходится прогревать двигатель почти до рабочей температуры.

Очевидно, что система поддержания ХХ нуждается в основательной настройке. Для начала нужно уяснить, что для поддержания ХХ в системах впрыска, содержащих в своем составе РХХ существуют два механизма регулирования – грубый, с помощью РХХ, и точный, с помощью УОЗ. Обе системы начинают работать только если обороты двигателя опускаются ниже оборотов первого переходного режима и система выставляет признак работы на ХХ. Иногда, заглянув в диагностику, мы видим УОЗ ХХ колеблющийся около нуля, хотя в прошивке – желаемый УОЗ на ХХ градусов 18 – 20 . На лицо полное отсутствие четкой взаимосвязи работы между регуляторами, РХХ неправильно подает воздух, а система УОЗ-ом пытается исправить ситуацию.

Что же делать? Браться за инженерный блок J 5 (J 7 ) Оnline Tuner. Но сначала немного теоретической информации:

П‑Регулирование.

П‑регулятор который управляет углом зажигания и предназначен для точного регулирования, те регулирования при небольших отклонениях оборотов от желаемых. Если разность желаемых оборотов и текущих больше переменной «Зона нечувствительности», происходит изменение угла зажигания на ХХ:

UOZ = UOZXX + KUOZ * EFREQ, где:

UOZXX – УОЗ на ХХ минус Коррекция УОЗ на ХХ;
EFREQ – Текущая ошибка оборотов при регулировании.
MINEFR – Зона нечувствительности.
KUOZ – Коэффициент коррекции УОЗ, принимается равным «Пропорциональному коэффициенту регулятора УОЗ_ 1 (высокие обороты)», если ошибка положительна (EFREQ > 0 ) или «Пропорциональному коэффициенту регулятора УОЗ_ 2 (низкие обороты)», если ошибка отрицательная (EFREQ 0 ).

Величина приращения УОЗ (KUOZ * FREQ) ограничивается величинами UDMIN и UDMAX взятыми из соответствующих таблиц «Минимальное и Максимальное смещение УОЗ».

Физически данное регулирование регулирование служит для обеспечения возврата фактических оборотов к желаемым: чем больше отличие оборотов от желаемых оборотов, тем больше изменится УОЗ в сторону для обеспечения возврата к ним, «Пропорциональный коэффициенту регулятора УОЗ 1 » увеличивает обороты, если они меньше желаемых, а «Пропорциональный коэффициент регулятора УОЗ 2 » снижает их.

ПИ-Регулирование.

Второй «регулятор» отвечает за работу РХХ. Механизм его регулирования немного сложнее П‑регулятора, т.к. у РХХ нет четко заданной уставки для ХХ, РХХ приходится регулировать от того положения в котором он находится в момент наступления ХХ. Поэтому очень важно чтобы когда этот момент наступает, РХХ находился как можно ближе к тому положению в котором будет осуществляться регулирование. Для этого необходимо правильно настроить возврат оборотов их режима ПХХ.

Работа ПИ-регулятора определяется формулой:

SSM = SSM + TMFR * (KFRI * EFREQ + KFR * (EFREQ – EFRET)),

SSM – положение РХХ, шаг.

TMFR – Жесткость регулятора частоты вращения – коэффициент, задающий скорость изменения положения РХХ в зависимости от разницы оборотов от заданных.

KFR – Пропорциональный коэффициент РХХ – как и в случае с УОЗ регулированием, определяет отклонение РХХ в зависимости от разницы оборотов. Чем больше разница, тем больше будет смещение РХХ от текущего.
KFRI – Интегральный коэффициент РХХ – временной коэффициент, изменяет шаги РХХ, в зависимости от времени непопадания в заданные обороты. Чем дольше по времени обороты не были равны заданным, тем больше будет отклонение РХХ.
EFREQ – Текущая ошибка оборотов при регулировании.
EFRET – Ошибка оборотов на предыдущем цикле регулирования.

Если разница оборотов заданных и текущих превысила «Ограничение оборотов для интегратора», то она принимается равной этой величине.

Физический смысл регулятора сводится к тому, что чем больше отклонились обороты от заданных и чем больше по времени они были отклонены, тем больше будет разница в положении РХХ между текущим и следующим, то есть, в отличие от П‑регулятора УОЗ, регулирование осуществляется ступеньками, РХХ будет приближаться к положению регулирования не мгновенно, а значит возможно перерегулирование – срыв ХХ в синусоидальные колебания оборотов со значительной амплитудой.

Практика.

Очевидно, что мы никак не можем напрямую повлиять на текущее положение УОЗ или РХХ на ХХ. Единственное чем мы можем оперировать, это коэффициентами, причем во время настройки РХХ нужно чтобы нам не мешал УОЗ и наоборот.

Для начала нужно выбрать желаемые обороты ХХ. Рекомендуется выбирать обороты чуть выше гарантированных, для того, что бы избежать проблем при движении на ПХХ и при значительном изменении нагрузки.

Настройка проводится в три этапа:

Этап 1 . Предварительная настройка ПИ-регулятора РХХ.

Выставляем смещение РХХ при включении вентилятора в 0 (По окончании настройки его нужно вернуть обратно). Выставляем «Ограничение оборотов для интегратора» примерно на две трети значения разности между желаемыми оборотами ХХ и «вторым переходным режимом».

Пример: ХХ = 1100 , обороты второго режима = 1400 , тогда «Ограничение оборотов для интегратора» будет ( 1400 – 1100 ) * 2 / 3 = 200 .

Это необходимо, чтобы «подхватывалось» регулирование в момент входа в ХХ и при этом не было бы перерегулирования и резкого провала по оборотам. 2 / 3 – относительный параметр, полученный практически, придерживаться его необязательно, но, в любом случае, делать «Ограничение оборотов для интегратора» больше разницы ХХ и ХХ 2 нет смысла.

Далее, открываем «Окно диагностики» в J 5 OLT, «Прямое управление ИМ» – фиксируем УОЗ, например, на 16 градусах. Далее, устанавливаем интегральный коэффициент в 0 и настраиваем только «Пропорциональный коэффициент». Нужно установить такой пропорциональный коэффициент, чтобы РХХ вставал навстречу изменяющимся оборотам. Это хорошо видно на графиках. Обороты должны перестать быть волнообразными, если они будут рваными, но удерживаться рядом с заданными, переходим к настройке П‑регулятора УОЗ.

Этап 2 . Настройка П‑регулятора УОЗ.

После того как мы добились желаемого ХХ, который не плавает волнами, надо настроить точное регулирование УОЗ-ом. Для этого нужно иметь представление, в каких пределах мы можем с помощью УОЗ влиять на обороты. Открываем «Окно диагностики» в J 5 OLT, «Прямое управление ИМ» – фиксируем РХХ на среднем положении, в котором он пребывает и начинаем двигать углом, так же через прямое управление. При увеличении угла обороты должны расти, а при уменьшении – падать. Причем, если при увеличении УОЗ, они растут, то при дальнейшем увеличении они начинают опять падать. Увеличиваем, запоминаем угол, при котором обороты еще растут, но скоро будут падать, например, 27 град. (при 30 , например уже начинается спад). Дальше снижаем до порога, при котором работа двигателя еще устойчива и обороты реагируют на уменьшение УОЗ и запоминаем его, например это 5 градусов (при 3 , уже начинается неустойчивая работа или УОЗ перестает влиять).

Рассчитываем средний угол, который и будет углом зажигания. УОЗХХ = ( 27 + 5 ) / 2 = 16 .

Рассчитываем максимальную величину смещения: UDMAX = – UDMIN = 27 – 16 = 11

Выставляем в прошивке УОЗ на ХХ 16 градусов, «коррекция УОЗ на ХХ» поднимаем/опускаем так, чтобы оно было равно 0 при рабочих температурах. Смотрим, какое наполнение мотора на ХХ, и в калибровках Максимального и Минимального смещения УОЗ выше этого наполнения ставим 1 и ‑ 1 градус соответственно, а ниже и при нем, 11 и ‑ 11 соответственно, тем самым не давая вывалиться углу за рабочие пределы регулирования.

Зона нечувствительности выставляем 10 оборотов, т.к П‑регулирование это все-таки точная настройка на малых отклонениях.

На этом настройка П‑регулятора закончена и опять переходим к ПИ-регулированию с помощью РХХ, не забыв зафиксировать УОЗ на наших вычисленных 16 градусах.

Внимательно следим за изменением оборотов и на то как УОЗ этому противостоит. Необходимо, используя коэффициенты, добиться чтобы УОЗ двигался «навстречу» скачку оборотов даже несколько больше чем это нужно, как бы упреждая раскачку оборотов, то есть, УОЗ должен резко реагировать на изменение оборотов и не должен быть плавным и волнообразным.

Сначала настраиваем Высокие обороты выставляя в ноль коэфф_ 2 , и меняя коэфф_ 1 от 0 и вверх. Затем начинаем повышать коэфф_ 2 от 0 так же вверх, следя за изменением реагирования УОЗ на изменение оборотов. Если взять большие коэффициенты, то работа мотора будет резкой, жесткой на слух, произойдет перерегулирование и обороты опять начнут плясать. В идеале получаем скачущий УОЗ навстречу изменениям в оборотах.

Этап 3 . Окончательная настройка ПИ-регулятора РХХ.

Теперь нам фактически надо повторить первый этап настройки, то есть добиться ровного ХХ, меняя П‑коэффициент регулятора, не трогая И‑коэффициент, который равен 0 . Разница в том, что мы теперь делаем это при правильном угле и в будущем нам будет помогать УОЗ регулятор, но для начала нам надо правильно настроить Жесткость регулятора РХХ, чтобы она соответствовала условиям работы. Раньше ее настраивать не имело смысла, рабочее наполнение было бы другим.

Смотрим обороты ХХ/наполнение, открываем «Жесткость регулятора РХХ» и делаем так, чтобы при ХХ и наполнении на ХХ, в таблице стоял коэффициент 1 , а при отклонении от режимной точки ХХ, коэффициент увеличивался.

Получится как бы трехмерная чашка, у которой на дне область режимных точек ХХ с коэффициентами 1 и по мере отдаления от ней коэффициент растет. Тем самым обеспечивается быстрое изменение числа шагов РХХ при удалении оборотов от заданных.


Рис. 1 Примерный вид настроенной жесткости регулятора ХХ

Далее, окончательно настраиваем П‑коэффициент, к этому времени, обороты уже должны быть достаточно устойчивыми и РХХ будет колебаться несильно, отзываясь на достаточно сильные изменения оборотов. Теперь дошла очередь до И‑коэффициента. Увеличиваем его, плавно с 0 , по одному шагу, смотрим что происходит с РХХ и оборотами. Увеличиваем до тех пор, пока РХХ и за ним обороты не начнут скачком, неожиданно изменяться верх/вниз от устойчивого состояния, делаем пару-тройку шагов назад и считаем настройку оконченной.

Как показала практика, численные значения И‑коэффициента колеблется от 1 / 5 до 1 / 10 от значения П‑коэффициента.

Напоследок отметим некоторые моменты при калибровки системы по дросселю.

Если вы используете прошивки, не поддерживающие коррекцию расчетного наполнения по положению РХХ, то использовать ПИ-регулятор РХХ в стандартном виде нецелесообразно, так как при изменении положения РХХ фактически будет меняться количество воздуха, поступающее в двигатель, что никак не будет учитываться и приведет к изменению состава смеси на ХХ. В совокупности с включенным лямбда – регулированием это может вызвать раскачку оборотов и выход состава смеси за допустимые пределы.

В таких случаях сам по себе РХХ оставить в системе можно и нужно, но критерии выбора П‑коэффициента будут другими. В таких системах регулирование оборотов ХХ целесообразно возложить почти полностью на регулятор УОЗ, а регулирование количества воздуха через РХХ свести к минимуму. Для того, чтобы при включении нагрузки (например, фары) регулятор УОЗ не входил в насыщение (то есть, УОЗ не упирался в верхний предел), в качестве базового УОЗ на ХХ необходимо выбирать меньшие значения, чем описано выше. В этом случае, диапазон регулирования вверх будет шире, чем вниз. Из практики можно сказать, что средний УОЗ на ХХ необходимо опустить относительно расчетного на 3 .. 6 гр. Дополнительной мерой борьбы с провалами оборотов при включении мощных электрических нагрузок может служить увеличение значений желаемого УОЗ на ХХ в зоне оборотов ниже желаемых оборотов ХХ на прогретом двигателе.


Рис. 2 Примерный вид таблицы желаемого УОЗ на ХХ с коррекцией УОЗ на оборотах ниже ХХ

В этом случае, при резком падении оборотов отклик регулятора УОЗ будет более резким, так как коррекция УОЗ будет состоять из двух частей: прибавка, расчитанная П‑регулятором по степени ошибки оборотов плюс табличная прибавка желаемого УОЗ.

Теперь рассмотрим особенности настройки регулятора РХХ. Как уже писалось выше, нам необходимо минимизировать движение РХХ, чтобы количество воздуха через РХХ оставалось практически неизменным при регулировании. Для этого необходимо исключить И‑составляющую, путем выставления интегрального коэффициента в 0 и минимизировать пропорциональную составляющую так, чтобы РХХ в процессе регулирования РХХ не двигался (или двигался не более, чем на 1 шаг). Для настройки П‑коэффициента надо временно отключить регулятор УОЗ путем выставления его коэффициентов регулирования в 0 и убрать коррекцию желаемого УОЗ (тоже временно) на оборотах ниже ХХ (см. Рис. 2 ). Выставьте пропорциональный коэффициент РХХ в минимальное значение (но не в ноль!). Попробуйте включить фары и обогрев стекла, при этом обороты ХХ упадут ниже желаемых (двигатель при этом глохнуть не должен). Увеличивая П‑коэффициент, добейтесь того, чтобы РХХ открылся на 2 – 3 шага, при этом обороты ХХ могут и не подняться до желаемых, но повыситься. Сильнее открывать РХХ за счет пропорционального коэффициента нет необходимости, окончательную стабилизацию оборотов сделает регулятор УОЗ после его включения. Главное, чтобы РХХ компенсировал некоторую часть падения оборотов, чтобы регулятор УОЗ не «задирал» угол в верхний предел. После этого включите регулятор УОЗ и проверьте работу ХХ в том числе и при включении мощных нагрузок. В нормальном режиме регулирования (без включения нагрузок) положение РХХ должно либо оставаться неизменным, либо изменяться не более, чем на 1 шаг.

Вот, собственно и все. Этой методики вполне достаточно для того что бы настроить ХХ практически на любом авто с алгоритмическими системами впрыска, даже неисправном.

Сообщества › Карбюраторы Солекс › Блог › [Легкие доработки] Система стабилизации холостого хода. Часть 1.

Итак сначала Теория.
Начинаем по капле «выдергивать информацию» из Интернета (если у некоторых «продвинутых» форумчан есть информация и ответы на все вопросы с одного единственного сайта, прошу поделиться ссылкой со всеми :-))).
Есть, конечно, системы стабилизации частоты вращения коленчатого вала при холостом ходе встроенные прямо в карбюратор, со всеми необходимыми сверлениями, жиклерами и электроклапанами. Воздух, проходя через обходной канал и создавая в нем разрежение, «вытягивает» дополнительное топливо через соответствующий жиклер. Но это, или подобное, сделать довольно сложно и поэтому обратимся к опыту изготовителей карбюраторов, использующих вакуумные диафрагмы.

Итак книга «Японские карбюраторы 1979-1993 г. Mazda. Карбюраторы Aisan 28/32. Принципы работы» japancar.pp.ru/japonskie-karburatory-23
Система стабилизации частоты вращения коленчатого вала при холостом ходе (установлена на некоторых моделях)

«Когда на двигатель ложится повышенная электрическая нагрузка (например, при включении фар головного света или обогревателя заднего стекла), частота вращения коленчатого вала при работе двигателя в режиме холостого хода обычно уменьшается, так как генератор получающий привод от двигателя, оказывает большее сопротивление и двигатель может заглохнуть.
Для того, чтобы этого не случилось, скорость холостого хода обычно устанавливается немного выше, чем требуется. Если использовать систему стабилизации скорости холостого хода для открытия дроссельной заслонки при повышении нагрузки на двигатель, скорость холостого хода можно сохранить на низком уровне. На автомобилях Mazda установлена система, использующая электромагнитный клапан и электронный блок управления для подачи разрежения на рабочую диафрагму, при включении одного или нескольких следующих элементов электрооборудования:

— Фары головного света или подфарники
— Вентилятор печки
— Вентилятор охлаждения радиатора
— Обогреватель заднего стекла

При включении какого-либо из этих элементов электрооборудования электронный блок управления посылает сигнал на электромагнитный клапан, разрежение подается на рабочую диафрагму, которая приоткрывает дроссельную заслонку. Когда электрическая нагрузка пропадает, сигнал прекращается, и электромагнитный клапан закрывает вакуумный канал. Разрежение у диафрагмы пропадает, и дроссельная заслонка возвращается в положение холостого хода.»

К сожалению в описании Mazda нет схемы и, к тому же, требуется электронный блок управления, поэтому переходим к описанию Suzuki. Кстати в этом описании (извините за повтор принципа работы) и система попроще, т.е. то что нам и надо:

Японские карбюраторы 1979-1993 г. Suzuki. Карбюратор Aisan 2V. Принципы работы japancar.pp.ru/japonskie-karburatory-144

1. Аккумулятор
2. Выключатель фар головного света и подфарников
3. Выключатель вентилятора печки
4. Выключатель вентилятора охлаждения радиатора
5. Выключатель обогревателя заднего стекла
6. Вакуумный клапан
7. Диафрагма и шток
8. Регулировочный винт
9. Рычаг дроссельной заслонки
10. Карбюратор

Когда на двигатель ложится повышенная электрическая нагрузка (например, при включении фар головного света или обогревателя заднего стекла), частота вращения коленчатого вала при работе двигателя в режиме холостого хода обычно уменьшается, так как генератор, получающий привод от двигателя, оказывает большее сопротивление, и двигатель может заглохнуть.

Для того чтобы этого не случилось, скорость холостого хода обычно устанавливается немного выше, чем требуется. Если использовать диафрагму повышения частоты вращения коленчатого вала для открытия дроссельной заслонки при повышении нагрузки на двигатель, скорость холостого хода можно сохранить на низком уровне. На автомобилях Suzuki установлена система, использующая вакуумный клапан для подачи разрежения на рабочую диафрагму, при включении одного или нескольких следующих элементов электрооборудования:
— Фары головного света или подфарники.
— Вентилятор печки.
— Вентилятор охлаждения радиатора (не на всех системах).
— Обогреватель заднего стекла (если установлен).
При включении какого-либо из этих элементов электрооборудования реле посылает сигнал на вакуумный клапан. Клапан закрывается (открывается — авт.), и разрежение подается на рабочую диафрагму, которая приоткрывает дроссельную заслонку. Когда электрическая нагрузка пропадает, сигнал прекращается, и клапан открывается (закрывается — авт.). Разрежение у диафрагмы пропадает, и дроссельная заслонка возвращается в положение холостого хода.

Это были схемы, а теперь «выдергиваем» фото реального карбюратора ДЭУ Tico (клон Mitsubisi) из сайта dinamitry.eniko.ru/reports/carbtico.htm, для того чтобы было понятней что собой представляет вакуумный привод и его крепление к карбюратору:

Как видим на карбюраторе для кронштейна имеются специальные приливы и на оси дроссельной заслонки предусмотрен спецрычаг, которых у нас на Солексе нет, вернее сейчас нет 🙂

Закончили с «японцами и корейцами» и переходим … к «отечественному» автопрому, правда и здесь не обошлось без помощи все тех же японцев :-).
«Выдергиваем» информацию о … Ребята это бомба!, хотя вам поначалу покажется, что я отклонился от темы. Отнюдь. Сейчас все поймете.

С разрешения автора fiolet Лада 2108 ELECTRONICA › Бортжурнал › Штатный кондиционер Lada Samara. Sanden Japan ниже опубликую его фото и видео, но только те, которые касаются нашей темы. В последней части его статей есть ссылки на всю информацию о кондиционере www.drive2.ru/l/7733891/

Цитата:
«Да, мало кто знает, что изначально завод предусматривал установку кондиционеров в 2108/2109/21099.»

Для этого в кузове имеются технологические отверстия, технологические отверстия и приливы на блоке двигателя семейства 2108, отдельные кронштейны под компрессор и генератор, увеличенный в диаметре шкив коленчатого вала для эффективной работы на холостом ходу с учетом увеличившейся нагрузки.

А вот и то, что нам надо:
Цитата: «Корпус отопителя японского производства отличался наличием встроенного испарителя, оригинальным медным радиатором и металлическим краном, а на карбюраторе появился привод увеличения оборотов при включении кондиционера. Это в современном автомобиле ими заведует электронный блок управления двигателем, а на обычном карбюраторе приходилось ухищряться и устанавливать дополнительные системы с вакуумным приводом …»

Заметьте, это родное, заводское, ДААЗовское исполнение деталей (эта строка для «продвинутых» форумчан)!

Что такое электромагнитный клапан холостого хода

Все современные автомобили с двигателями внутреннего сгорания любого типа (карбюраторный, инжекторный, дизельный) имеют систему холостого хода.

Данная система обеспечивает стабильную работу двигателя на холостом ходу (ХХ), когда полностью закрыта дроссельная заслонка акселератора.

Одним из основных элементов этой системы является электромагнитный клапан холостого хода, называемый также «электропневмоклапан», «электромагнитный клапан», «регулятор холостого хода».

Назначение клапана ХХ

Клапан холостого хода обеспечивает поступление топливо-воздушной смеси во входной коллектор двигателя по отдельному дополнительному каналу ХХ в обход дроссельной заслонки, управляемой педалью акселератора.

В зависимости от типа двигателя клапан холостого хода регулирует подачу либо топлива, либо воздуха.

В карбюраторных и дизельных двигателях он управляет подачей во входной коллектор топлива, необходимого для стабильных холостых оборотов двигателя.

В бензиновых инжекторных двигателях обеспечивает подачу нужного количества воздуха.

Принцип работы клапана ХХ

По своей сути клапан холостого хода является электромеханическим исполнительным устройством, работающем под управлением электронного блока, подающего электрические сигналы на его открытие или закрытие.

При этом происходит изменение диаметра проходного сечения канала ХХ, подающего во впускной коллектор двигателя необходимое количество топлива или воздуха.

В бензиновых карбюраторных двигателях электромагнитный клапан ХХ установлен непосредственно в корпусе карбюратора и входит в систему экономайзера принудительного холостого хода (ЭПХХ) топливной системы.

Управление работой клапана ХХ осуществляет блок управления ЭПХХ, установленный в моторном отсеке автомобиля.

При включении зажигания с блока управления подается питание на электромагнитный клапан, который открывается и обеспечивает подачу бензина по каналу ХХ во впускной коллектор двигателя.

При выключении зажигания клапан холостого хода обесточивается и перекрывает подачу топлива.

Для регулировки объема топлива, подаваемого по каналу холостого хода, в нем установлен регулировочный винт, называемый «винт холостого хода».

В бензиновых инжекторных двигателях клапан холостого хода, чаще называемый «регулятор ХХ», монтируется в корпусе дроссельной заслонки и входит в систему электронного управления двигателя (ЭСУД).

Его работой управляет электронный блок ЭБУ (контроллер), расположенный, как правило, в салоне автомобиля под передней панелью.

Блок управления фиксирует сигналы от датчиков, контролирующих отдельные параметры работы двигателя, обрабатывает полученную информацию и выдает управляющий сигнал на регулятор холостого хода.

По команде от блока ЭБУ регулятор ХХ увеличивает или уменьшает объем подаваемого через него воздуха во входной коллектор двигателя, обеспечивая заданные обороты ХХ.

В дизельных двигателях клапан холостого хода устанавливается в корпусе топливного насоса высокого давления (ТНВД) и также как в инжекторе подключен к блоку управления ЭБУ двигателем, расположенном в моторном отсеке.

Но при этом он регулирует подачу в цилиндры топлива, а не воздуха, обеспечивая необходимые обороты на холостом ходу.

Основные виды и устройство клапанов ХХ

В зависимости от типа двигателя применяются три основных вида электромагнитных клапанов:

  1. Соленоидный;
  2. Роторный;
  3. Шаговый.

Соленоидный вариант представляет собой электромагнит в виде втягивающей катушки с сердечником, установленным на входе в канал холостого хода.

При подаче питания на катушку сердечник втягивается, открывая проходное отверстие канала.

При обесточивании катушки сердечник возвращается в начальное положение, запирая канал.

Роторный тип клапана работает по такому же принципу, как и соленоидный. Но вместо сердечника используется ротор, который вращается в разных направлениях, плавно изменяя сечение проходного канала холостого хода.

При этом применяется широтно-импульсная модуляция (ШИМ), предусматривающая высокую частоту подачи управляющих сигналов на открытие или закрытие клапана.

Шаговый клапан холостого хода, по сути, это электродвигатель, выполненный в виде кольцевого магнита и четырех обмоток.

Управляющие сигналы от блока ЭБУ подаются поочередно на одну из обмоток, в результате чего вращается ротор, плавно изменяющий сечение проходного канала от его полного открытия до полного закрытия.

Признаки неисправности клапана ХХ и его устранение

Неисправный клапан холостого хода может вызывать:

  • проблемы с запуском двигателя, он может заводиться и сразу глохнуть;
  • нестабильные холостые обороты двигателя;
  • выключение двигателя при постановке КПП на нейтраль;
  • снижение холостых оборотов при включении нагрузки (печка, фары и т.д.).

Работоспособность электромагнитного клапана холостого хода карбюраторных двигателей можно проверить самостоятельно по легкому щелчку электромагнита в момент включения зажигания.

Для инжекторных и дизельных двигателей, работающих под управлением блока ЭБУ, его неисправность может быть выявлена с помощью диагностического оборудования.

Вывод

Таким образом, клапан холостого хода составляет важный элемент системы питания двигателя, от которого во многом зависит стабильная работа любого современного автомобиля.

Надеемся, что полученные знания помогут Вам в дальнейшем правильно эксплуатировать свой автомобиль.

Читать еще:  Новый BMW X5 2019
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector